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Abstract
0

A minimum correction homotopy approach is used to obtain the

* simultaneous/integrated optimal design of a large flexible structure and its active control

system. Instead of the usual method of weighting and summing all desired objectives to

form a constrained scalar optimization problem, a vector of objective functions is dealt with

* directly.

The Draper/RPL configuration (a central hub with four symmetric, identical arms) is

the design structure. The design seeks to minimize the mass of the arms. Using simple

* feedback of arm displacements and velocities, the control system seeks to achieve specified

closed-loop eigenvalues (frequencies and damping ratios) and control effort. Design

variables are the arm dimensions, control system gains, and sensor and actuator locations.

* Not only can the structural design be accomplished while placing the closed-loop

eigenvalues, but a simultaneous 50% reduction in mass and/or control effort can be

obtained.

* Since reduced-order models were used for the structural/control design, the resultant

configurations are easily driven unstable by spillover from higher-order unmodeled modes.

A modal suppression technique is applied to eliminate observation spillover and provide a

* decade of deadband above the controller bandwidth.' /&' "- -

xii
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* INTEGRATED STRUCTURAL/CONTROL DESIGN

VIA MULTIOBJECTIVE OPTIMIZATION

I. Introduction

* The design of large flexible space structures presents distinct and often competing

challenges to both structural dynamicists and control engineers. The need to maneuver

such structures and then suppress resultant vibrations, or to reject disturbance vibrations

from a variety of sources to meet exacting pointing and stability requirements is often

directly opposed to the low stiffness and high flexibility accompanying a low weight

design. Passive techniques to supplement structural damping justly receive much attention

and are very important, but are not panaceas. The requirement for active control of large

space structures is widely, if not universally, accepted.

Active control of large space structures has been extensively studied. Design

0 methods have progressed well beyond the practice of adding active controls to make up for

or 'fix' structural difficulties. However, design of actively controlled structures has

traditionally been a sequential process: first the structure was designed based on structural

0 criteria (minimize mass while achieving desired natural frequencies, mode shapes and

dynamic response); then the control system was designed to meet desired closed-loop

objectives (while minimizing controller work and the energy of the vibrating structure) for

0 the given structural design. Inasmuch as a lower weight (higher flexibility) structure

requires more control energy, the objectives of the two design steps are contradictory and

an optimal controller placed on an optimally designed structure does not result in an optimal

0 control-structure design.

1-I
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A natural progression has been to incorporate the sequential approach into a design

loop, repeating the process so that the design result improves with each iteration.

However, the iterated design tends to be dominated by the first discipline in the sequence.

In the recent technical literature, the competitive natures of structural and active

control system design are recognized. Attempts are made and interfaces are suggested to

integrate the design process. However, because of the very strong, frequently

unintentional and adverse coupling between the flexible structure and active control system,

a wholistic or simultaneous approach to integrated structural/control design is necessary.

In particular, a vector approach wherein both structural and control design objectives are

treated in parallel will be developed.

Finally, it must be noted that designs are normally based on reduced-order models,

especially of large flexible space structures, either due to considerations of on-board

computer speed or the ability to accurately determine controller gains. Spillover from the

higher-order (unmodeled) residual modes affects system performance and may well cause

instability. Considerations of model order truncation effects must not be neglected in any

structural/control design. An integrated design approach, as any other, is only as good as

the information it is based upon.

This dissertation presents an approach to integrate structural and control design.

First, previous work, using both scalar and multiobjective approaches, is reviewed

(Chapter II). Next, the problem of an actively controlled structural system is formulated

(Chapter III), followed by descriptions of how the structure and controller are modeled for

this study (Chapter IV). In Chapter V the use of a minimum correction homotopy

algorithm to optimize a vector objective function is discussed and applied to this integrated

structural/control design problem. Chapter VI presents design results for various

combinations of design objectives. An examination of the designs' sensitivity to spillover

from higher-order modes leads to the two methods of spillover control and corresponding

I -2
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results discussed in Chapter VII. Conclusions regarding this integrated design approach,

* including spillover control, and recommendations for future work are given in Chapters

VIII and IX, respectively.

1 -3
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II. Background

Within the last several years, interest and research in integrated structural/control

* design has grown and been reported. Such design methods result in desired system

response characteristics with lower mass and possibly control effort because structural

properties have been tailored to augment the active control system. However, the vast

* majority of the work has used a series/sequential approach to arrive at an optimal design.

Scalar Approach

This integrated design task has almost exclusively been treated a. a scalar

optimization problem. The objective function is usually taken to be either: 1) the structural

mass, with the other desired criteria (controller performance or system response

characteristics) treated as constraints to define a feasible design space, or 2) a weighted

sum of all desired properties and characteristics. In the first case, such an approach not

only requires a priori determination of the criteria excluded from the objective function, but

seriously weakens the overall design process by the choice of a single criterion to define

the merit of an entire system. Design trade-offs may be accomplished (with some

difficulty) by changing the constraints to define a new feasible design space and

reaccomplishing the optimization problem.

In the second case, the combination of several conflicting, usually non-

commensurable criteria which should be optimized simultaneously into a single scalar

objective function is not only unnatural to the physics of the problem but also often

inadequate. While commendable and significant in that structural and control syntheses are

treated together vice sequentially, this combinatorial approach raises the question: what

does minimization of a sum of structural properties (say mass) and controller characteristics

2-1



(say control energy or a steady-state linear quadratic regulator [LQR] cost function) really

* mean or represent? LQR controller synthesis suffers a similar identity crisis: why the

minimization of a particular weighted integral of state and control variables? In the case of

LQR controllers, the question is moot since the true motivation is to yield a tractable

0 problem whose solution is readily synthesized and easily implemented. Likewise, the

combinatorial approaches to structural/control design "represent at least a convenient

parameterization of the problem wherein designs can be iteratively considered and

* improved through variation of the weighting matrices (1:1124)." Although doing such

design sensitivity trade-offs only yields local information in the neighborhood of the

optimum (2:483,503; 3:141; 4:1101; 5:333), this approach is particularly and conveniently

* amenable to solution via the vast software libraries of existing optimization techniques and

algorithms.

Multiobjective Optimization

Multiobjective (multicriteria, multicriterion, vector) optimization is a more natural

and, hopefully, more efficient approach to effectively account for the numerous different

and often conflicting or competing criteria inherent in structural/control design problems.
0

This approach may be mathematically considered as the vector extension of scalar

optimization or, from an engineering point of view, seen as a tool to find compromise

designs/solutions to the conflicting practical requirements. The designer can then

systematically analyze the alternatives to arrive at a preferred solution which, while none of

the criteria will necessarily attain its extremum, will satisfy the design requirements in some

subjective 'best' way (2:503; 3:141; 4:1101).

Multiobjective optimization first arose in the study of mathematical economics and

progressed to general decision-making and engineering (6:162-163; 7; 8; 9; 10; 11:1-10).

Its use in structural mechanics dates back to the 1970's. Stadler's survey (12) examines

0
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multicriteria optimization in the broader field of mechanics to 1984. Briefer summaries of

* its applications in structural mechanics to date are given by several authors (2:484; 3:141-

142; 13:184; 14:119-120).

Pareto Qptimality. (2:484-487; 3:142; 4:1102-1103; 5:333-334; 10:68-72; 15:925-

* 926; 16:459-460). The general form of a multiobjective optimization problem is

rain I (_z (2-1)

* where y. Q -) 91P is a vector objective function given by

-Y(U) = [ 1 (), 72 Uz, "', Yp (g),]T (2-2)

* O The components yi: Q -+ 93, i = 1, 2, ..., p are the design criteria - the conflicting and

often non-commensurable performance objectives. The design variable vector Z belongs to

the feasible set Q c 9Rd, defined by

j2= {z E : () 0, h(z) = 01 (2-3)

where ci: 91d --- 9r, i = 1, 2, ..., r are inequality constraint functions and hi: 9 d -- q, i-

• 1, 2, ..., q are equality constraint functions. The image of the feasible set in the criterion

space is the attainable set, given by

8 = { =) 9Ip : Z r Q} (2-4)

Since the components yi of the objective vector are usually conflicting, an optimal

solution (or superior solution), that is, a unique point or value of z which will minimize all

S iy, simultaneously, will not, in general, exist for the multiobjective problem. Attention is

therefore commonly directed to Pareto optimum solutions (non-inferior solutions, non-

dominated solutions, efficient solutions).

2.3
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A vector z* e Q' is (strongly) Pareto optimal if and only if there exists no z E Q such

0 that yi (_z < yi (-*), i = 1, 2, ..., p with yj (Z) < yj (z*) for at least one j. Verbally, z* is

Pareto optimal if there exists no feasible vector z which would decrease some criterion

without causing a simultaneous increase in at least one other criterion. In contrast, if all

elements of the objective vector are simultaneously achievable, the solution is termed

"dominated".

If 8 is non-empty closed and max {yi (z) (z) 6 E J < o for all i, then 0 has at

least one (strongly) Pareto optimal solution. "Thus, a large class of multiobjective

optimization problems in structural design may be expected to possess at least one non-

dominated solution (16:460)." Whereas in scalar optimization one optimal solution is

0 usually characteristic of a problem, a set or family of Pareto optimal solutions generally

exist for a multiobjective optimization problem. Mathematically speaking. the

multiobjective optimization problem is 'solved' once the Pareto optimal set is determined.

Practically speaking, too many Pareto optimal solutions often exist, and it may be

necessary to order or rank the set to determine a preferred solution.

While there is an extensive literature of models and methods to generate the Pareto

optimal set and hence solve multiobjective optimization problems, the choice of which

technique to use on a given problem is very subjective, especially for nonlinear, large

dimensioned problems. There is no requirement to seek Pareto over dominated solutions;

it has simply become common practice to do so when possible. If they can be found, the

Pareto solutions can be claimed to be optimal in some subjective sense, whereas dominated

solutions are only attainable. Unfortunately, there are very few direct precedents for the

multiobjective optimization of large, actively controlled structures. Based on the work and

conclusions of Rao and associates (13, 14, 17), utility function, goal programming and

cooperative game theory methods appeared promising.

2 -4



The utility function and goal programming methods both reduce the original

* multiobjective problem to a scalar optimization problem (primarily as a weighted sum of the

individual design objectives). Minimizing the scalar objective naturally yields a Pareto

solution (corresponding to the particular scalarization scheme, weighting, etc.). However,

both of these methods had difficulty converging to a solution for the sub-problem of

control system design (placing closed-loop eigenvalues) and would not converge to

solutions for integrated structural/control design (reducing mass while placing closed-loop

* eigenvalues). Therefore, these relatively simple approaches were abandoned and, based on

these experiences, cooperative game theory (a much more complicated and elegant

scalarization scheme) was never attempted.

Minimum Correction Homotopy Approach. Junkins and associates have used a

minimum correction homotopy (MCH) approach to multiobjective optimization which can

preserve the vector nature of the competing design criteria (18-21). However, in three of

the four works (18-20), only controller design objectives (state error energy, control

energy, and a stability robustness measure) were considered in a sequential approach

minimizing one criterion while holding the other two objectives to prescribed values in the

neighborhood of their unconstrained minima. In the fourth work (21), the MCH algorithm

was used to establish a feasible design point satisfying a constraint vector of desired

closed-loop eigenvalues. A robustness measure (the sensitivity of the closed-loop

eigenvalues with respect to variation of uncertain system parameters) was subsequently

minimized.

While the most notable and honestly vector approaches to multiobjective

optimization, these four studies (18-21) still lack two important considerations from the

standpoint of integrated structural/control design. First, only control system design was

considered, although one case is presented (21) where a structural design iteration was

performed before the MCH approach was used to satisfy the constraint vector. Second,

2-5
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the 'true' objectives are not dealt with directly as a vector. They are either dealt with in

sequence as constraints (18-20) or 'after the fact' (21). Indeed, values for the final or

'true' objective (robustness) are not even reported in (21).

Given the convergence problems encountered with utility function and goal

* programming approaches to finding Pareto optimal solutions, the MCH approach was

turned to next. A simple extension of the vector (objective) function in (21) to include

structural mass (and later control effort) applied the MCH technique to the problem of

* integrated structural/control design.

Although Stadler reported "the most extensive use of multicriteria optimization has

been made in optimal structural design (12:282)," the techniques encompassed by the topic

of multiobjective optimization are only beginning to be considered for the simultaneous or

integrated structural/control design problem. While again commendable unifications of

structural and control design objectives, the work to date may still be classified as either a

series/sequential approach (17-20) or reduction (via some weighting scheme) to a scalar

optimization problem (13, 14, 17-20).

The MCH method differs from the traditional or standard multiobjective optimization

* techniques in two ways. First, dominated vice Pareto solutions are found; there is no

trade-off amongst the competing design objectives to arrive at some "best" solution. The

method converges rapidly to the objective vector as specified. Second, the vector nature of

* the objectives is preserved vice the more common reduction to a scalar optimization

problem.

In spite of these differences, the topic of multiobjective optimization should include

* the MCH approach in its catalog of techniques. This research shows the approach's

validity and great utility to extend multiobjective optimization to the problem of integrated

structural/control design.

2-6



III. Problem Formulation

Consider the discretized linearized equations of vibrational motion for a controlled

structural system, neglecting disturbances:

Mw + Cw + Kw = Bu (3-1)

where

w - n-vector of generalized coordinates

u a-vector of control inputs

M = nxn symmetric positive definite mass matrix

C = nxn symmetric positive semidefinite damping matrix

K = nxn symmetric positive semidefinite stiffness matrix

B = nxa control influence matrix

') - d( )/dt

For direct output feedback control of such a system, let local position and velocity

0 measurements, respectively, be denoted as:

yp = Hpw, yv = Hv w (3-2)

* Assuming s colocated position and velocity sensors, Hp = Hv = H and is an sxn matrix

describing sensor locations and orientations, while yp and Yv are s-vectors.

The control p is a linear combination of the outputs:

S= - yp + Gv yv

=-GpH - GV H w  (3-3)

3-I
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where Gp and G, are constant axs gain matrices.

If proportional damping is assumed,

C = aM + 0 K (3-4)

where a and 3 are positive constants. If Eqs (3-3) and (3-4) are substituted into Eq (3-1),

the closed-loop system is

Mc1w + CclW + KclW = 0 (3-5)

where

MCI =M, CC, =aM+3K+BGv H, Kci =K +BGpH (3-6)

The second-order system of Eq (3-5) can be written in first-order state-space form:

Ax = Tx (3-7)

where 0w 1 F 0
A = M, T I (3-8)

0 MCI -Kci -Cc

or, more conveniently, as

x = Acl x (3-9)

where, since McI = M and with I an identity matrix,

AK = (3-10)

The associated right and left eigenvalues and eigenvectors of Ac, are, respectively,

3-2
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Aie i = Acle i , .i fi = AcITfi i = 1,2,..., 2n (3-11)

Assuming all eigenvalues are distinct and, therefore, the eigenvectors are linearly

independent, the eigenvectors are conventionally normalized as

fiT ej = , fiT Ac, -j = 8i Xi (3-12a)

or

FT E  I, FTAc E = F-AJ (3-12b)

where E and F are the right and left eigenvector matrices whose ith columns are the

* eigenvectors t i and fi, respectively, 8ij is the Kronecker delta, and F A J is a diagonal

matrix of the eigenvalues X1, X2, -- 2n •

The closed-loop damping ratios i and damped frequencies wi are related to the in

* general complex conjugate pairs of closed-loop eigenvalues Xi as

i = -ai / (ay 2 + (0,2 )1/2, k, = 01, ± j W, i = 1, 2 ... , n (3-13)

The specific structural model and control system used in this research arc described in

the next chapter, leading to explicit expressions for the system matrices and state, output

and control vectors.
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IV. Model Description
S

Integrated structural/control design modifications to the Draper/RPL spacecraft model

will be demonstrated herein. This model has been used to test and demonstrate hardware

and control laws for maneuvering large flexible spacecraft. As shown in Figure 4-1, the

configuration consists of a large central hub with four identical appendages/arms

* symmetrically cantilevered from the hub. Each arm is modeled as a continuous beam with

a lumped mass at the end.

0

0

Figure 4-1. The Draper/RPL configuration
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Vibrational Motion

0 Only the planar rotational and vibrational dynamics will be considered. Radial

elongation of the arms and out-of-plane deformations are neglected. The equations of

motion for the uncontrolled system are derived by finding the system kinetic and potential

* energies, using assumed modes to discretize the energies, truncating to second-order terms,

forming the Lagrangian, and writing Lagrange's equations for the system. Figure 4-2

shows the Draper/RPL configuration with appendages numbered, deflections and rotations

* defined, and a body-fixed reference frame.

*u

L7
1U

Figure 4-2. Draper/RPL configuration with reference frame and deflections defined

4-2
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Kinetic Energy. The total kinetic energy will be written as the sum of the hub,

* appendage and tip mass energies.

The kinetic energy of the rigid hub alone is that of a solid cylinder:

Th = 3 Ih 62 (4-1)

02

where 0 is the rigid-body rotation angle of the body-fixed reference frame with respect to

an inertial reference frame, the hub moment of inertia is Ih = mh R2 / 2, mh is the hub mass

and R is the hub radius.

To determine the kinetic energy of appendage 1, a position vector is written as

= xb 1 + vb 2  (4-2)

The velocities of the elements of appendage 1 are obtained by taking the first time derivative

of the position vector with respect to an inertial reference frame:

r, = vb 2 + (6 Xr l )

= -V6l + (v + xO)b 2  (4-3)

* The x denotes the outer or cross product. Finally, the kinetic energy of appendage I is the

inner or dot product of the velocity vector with itself integrated with respect to the mass

over the length of the appendage. Denoting the appendage's moment of inertia as

x=R+ L

f x 2 dm (4-4)

x=R
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the kinetic energy of appendage 1 is

* x=R+L

T, = T f J (" r I) dm
x=R

= [ j v + v202 + 2v~x)dm +110 (4-5)

* The kinetic energy of the tip mass on appendage 1 is found in a similar manner. The

position vector is

rtl = (R+L)b1  + (Vlx=R+L)b2 (4-6)

As a reminder that the deflection v must be evaluated at x = R + L, let VtI vIx = R + L and

write the velocity vector as

r = vt -2 + (Ox r )

= -vtl1bb 1 + [Vti + 6(R+L)lb 2  (4-7)

The velocity is then

2Vti = rti E ti

t2 + 2vt 0(R+L) + 62 (R+L) 2 + vt2 6 2 (4-8)

To include the small effects of the rotary inertia of the tip mass, the angular velocity of the

tip mass is that of the body-fixed reference frame plus a component due to the deflection of

the end of the appendage (where the tip mass is located):
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* 1 0+ dI J

d(Svt'

•~- 0 6
dt

= + vt (4-9)

The kinetic energy of the tip mass is the sum of the translational and rotational energies:

1 [mtVt2 + It *t
2 ]  (4-10)To = 2" [ +4

The kinetic energy of appendage 3 and its tip mass are derived similarly:

T3 = RI (u 2 + u202 + 2u0y) dm + 13 2  (4-11)

TO3= " [mVt2 + It Ot
2  (4-12)

where

y=R+L= R +Y2
13 f y dm (4-13a)

y=R

2 *2 *2 2 +u2 2Vt= ut3 + 2ut3 0'(R+L) + 0 (R+L) + u 3 0 (4-13b)

d( Jut3y}
0t3 = 0+

- 0 + ut3  (4-13c)

ut3 ul y=R+L (4-13d)
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Consider only the case of anti-symmetric deformations of the arms where u4 =-u 3

and v2 =-v, as shown in Figure 4-3.

U3

0V

V2 -71

U4-. U 3

4 3

0I

Figure 4-3. Anti-symmetric deformation

0I

Thus, the kinetic energies of the tirst (third) appendage and tip mass are equal in magnitude

* to those of the second (fourth) appendages and tip mass - i.e., T2 = T1 , TO = TtI, T4 = T3,

Tt4 = Tt3. The total system kinetic energy (T) can be written as the sum of the individual

energies:

T = Th + 2(T, + Ttl + T3 + T3) (4-14)
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To expand Eq (4-14), carry out the integrations over dm in the arm thickness ('r) and height

(K) dimensions, assume constant mass density along the arms (Pd), and noting that 13 = 11,

define

10 = . lI + 2 11 + 2mt(R+L) (4-15)

The total kinetic energy is then written as

R+L
T (10+ 2 I)2+ PdT1 J (V2 + ,262 +2 v 0x) dx

R+L
+... .. ..2edj+ 2 2

0+ ( u + u2  2 + 2 u 0 y) dy + It [2 0 (vt + ut 3) + (vt) + (ut3) 2
R I

+ mt I v t + ut 2 + 20(R+L)(vtl + ut3) + 0 2 (vt2 + ut2) ]  (4-16)

A discretized system model is formed by assuming that the elastic arm deformations

(relative to a body-fixed undeformed state) can be represented as a linear combination of

admissible (shape) functions p'i (p) for the clamped-free appendage (21:699; 22:18):

pi (p) = 1 - cos (iTrp/L) + 0.5 (-1) i+1 (iitp/L) 2 (4-17)

where n is the familiar mathematical constant, p is the radial distance along the arm

(measured from the end clamped at the hub) and L is the arm length. This assumed mode

or shape function must be an admissible function for the model of a continuous beam with

a lumped mass at the end. The (shape) functions ti (p) are admissible since they satisfy

the geometric boundary conditions of the appendage: R. (p=0) = 0 since u (t,0) = v (t,0) =

0 and gt' (p=0) = 0 since u' (t,O) = V (t,0) = 0. [While not required, the p.i (p) are also

* comparison functions for a clamped-free appendage (beam alone), since they also satisfy
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the natural or physical boundary conditions: t" (p=L) = 0 since u" (t,L) = v" (t,L) = 0

and g.' (p=L) = 0 since u.' (t,L) = v" (t,L) = 0. However, when the tip masses are

included in the model, the ti (p) do not satisfy the natural boundary conditions but are still

admissible functions.]

* The transverse body-fixed deformations of the arms are modeled as

Nsf

u (t, p) = XUi(t) i (P), O<p<L (4-18a)

Nsf

v (t, p) = Vi(t) i (P), 0 < p, _L (4-18b)
i~ I

where Nsf is the number of admissible functions considered. This assumed-modes method

yields a generalized parameter model with U1 (t) and Vi (t) the generalized displacement

coordinates. Eqs (4-18) can be differentiated with respect to time and/or direction and

substituted into the expression for the total system kinetic energy, Eq (4-16), to transform

the expression to generalized coordinates.

Potential Energy. The potential energy of the system is the sum of the gravitational

and strain energies. Since the structure is assumed to be in orbit (or, if on earth, supported

by an air-bearing table), the gravitational potential will be neglected and the total potential

energy P taken as the strain or elastic potential energy alone, summed over all four

appendages:

P = Eyla 2 (v) dp(
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Ey is the modulus of elasticity (Young's modulus), la is the area moment of inertia (Ia -

Kt3/12), and u" and v" are the second partial derivatives of u(t,p) and v(t,p) with respect

to p. The restriction of anti-symmetric deformations also remains.

The assumed-modes method [Eqs (4-17) to (4-18)] again leads to the generalized

parameter model with Ui (t) and Vi (t) the generalized displacement coordinates and ti (p)

the admissible functions. Substituting into generalized parameters, differentiating and

arranging in matrix notation yields

P= E I f i (p) g.Ij (p) dp {U

+ Ey Ia {V}T JI i (P) j (p) dp {V} (4-20)

System Matrices. Now that the system kinetic and potential energies are in hand, the

differential equations of motion are obtained from Lagrange's equation (for no

nonconservative forces)

d 9Lg
d t - = 0 (4-21)
dt 6iw i

where i = 1, 2, ..., # of generalized coordinates. The Lagrangian is formed as L9 = T - P

where terms of order three or higher are neglected and the energies are written as

T = ! wT Mw (4-22a)
2

p W T K w (4-22b)
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M and K are the mass and stiffness matrices, respectively [as shown in Eq (3-1)], and the

* vector of generalized coordinates is

= 0 U , U2, "', UNs f VI , V2, "', VNs f I T (4-23)

Assuming anti-symmetric appendage motion has reduced the number of generalized

coordinates by 2 xNsf. The order of the system of Eq (3-1) is thus n = (2xNsf) + 1.

The elements of the mass and stiffness matrices are, for i = 1, 2, ..., Nsf and j = 1, 2,

* ....,Nsf

M(1,1) = 2(I 0 + I) (4-24a)

M(1, i+1) = 2[m2 (R+L) i i (L) + it 4ti (L

+ Pd'TK (p + R) i (p) dp] (4-24b)

M(i+l,j+1) = 2 [m 2 9i(L) g j (L) + it g ' (L ) g j (L )

+ Pd t I 4 i (p) 4j (p) dp] (4-2 4 c)

M (1, i+Nsf+1) = M (i+Nsf+1, 1) = M (i+l, 1) = M (1, i+1) (4-24d)

M (i+Nsf+-l,j+Nsf-l) = M (i+l,j+l) (4-24e)

M (i+1, j+Nsf+1) = M (i+Ns&1, j+1) = 0 (4-24f)
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SK(i+1, j+) = 2 EyIa I i (p) (p) dp (4-25a)

K (i+Nsf+l, j+Nsf+-I) = K (i+1, j+l) (4-25b)

K (1,1) = K (1, i+l) = K (1, i+Nsf+l) = K (+1, 1)

= K (i+Nsf+l, 1) = K (i+l, j+Nsf+-l)

= K (i+Nsf+l, j+l) = 0 (4-25c)

i• Model Order

After the first (rigid-body) mode, conservation of angular momentum results in the

vibrational modes occuring as pairs of 'opposition' and 'unison' modes. The first five

normal modes are shown in Figure 4-4. The anti-symmetric 'opposition' modes are simple

cantilever beam modes where adjacent arms move in opposition such that equal and

opposite torques result in no hub (rigid-body) rotation. The anti-symmetric 'unison'

modes are characterized by all four arms moving in unison; consequently, the hub rotates to

conserve system angular momentum.

The frequencies of pairs of opposition and unison modes are closely spaced and

aligned with the corresponding frequency of simple cantilever beam vibrations. This

alignment and decrease in spacing with increasing mode number is shown in Table 4-1 for

the first nine normal modes of the system (one rigid-body mode and four pairs of

opposition/unison modes aligned with the first four cantilever beam modes).
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"i able 4-1. Frequencies for first nine normal modes

Draper/RPL Structure Cantilever Beam

Mode Frequency Mode Frequency
# (Rad/sec) (Hz) # (Rad/sec) (Hz)

1 0 0
0 2 4.40 0.70

3 7.92 1.26 1 9.42 1.50

4 51.46 8.19
5 52.78 8.40 2 59.04 9.40

6 157.58 25.08
7 158.34 25.20 3 165.33 26.31

8 313.09 49.83
0 9 314.35 50.03 4 324.02 51.57

A typical design approach would begin with a very large-dimensioned structual

model, perhaps on the order of 100 modes or more, even when control of only a small

number of lower modes is desired. Calculating and storing eigenvalues and eigenvectors

40 (frequencies and mode shapes) for such a huge number of modes helps ensure the accuracy

of the model at the lower modes by Rayleigh-Ritz convergence to the true mode shapes and

frequencies from above. The model for control design is then a very accurate but truncated

version of the much larger structural model. However, the desire in this research to

integrate structural and control design precluded such an approach, as the basic structural

parameters are to be design variables and iterated each loop along with the control system

variables. Hence, a large-order structural model was not calculated and truncated to form a

design model. The structural model will only include those modes to be controlled.

0
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This research considers control system design by specifying damping ratios and

frequencies of the first five normal modes, i.e., the rigid-body mode and the first two pairs

of vibrational modes. Thus, Nsf = 2 and w is a five-dimensional vector:

w = 10, U1, U2 , V 1 , V2 ]T (4-26)

Structural system design is accomplished by varying the thickness and height of the

arms and herce structural mass. The arms are kept identical to each other as their

dimensior. are changed. The proportional damping constants in Eq (3-4) are taken to be o

= 0, p = 10-5, so C = 10-5 K and damping is proportional only to stiffness. With the

values for the system parameters given in Table 4-2, the explicit expressions for the

elements of the M and K matrices [Eqs (4-24) and (4-25)] can be evaluated.

Table 4-2. Draper/RPL configuration parameters

Hub radius (R) 0.3048 m (1 ft)

Rotary inertia of hub (1h) 10.8465 Kg-m 2  (8 slug-ft2 )

Mass density of arms (Pd) 2,690 Kg/m 3  (5.22 slug/ft3)

Modulus of elasticity (Ey) 7.584x 1010 Pa (1.584x 109 lb/ft2)

Arm thickness (t) 0.003175 m (0.0104166 ft)

Arm height (K) 0.1524 m (0.5 ft)

Arm length (L) 1.2192 m (4.0 ft)

Tip mass (mt) 2.29038 Kg (0.156941 slug)

Rotary inertia of tip mass (It) 0.00244 Kg-m 2  (0.0018 slug-ft2)
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Actuators and Sensors

Torque actuators are located on the central hub and at some position Pu on each arm.

For a torque uh at the hub, a torque ul at position Pul on arms 1 and 2, and a torque u2 at

position Pu2 on arms 3 and 4, the right-hand side of Eq (3-1) is

Bu= 2 &' (Pul) 0i u1 (4-27)

00 2 l' (Pu2) u2

where

I' (P) = d 1 (p) U (P) = [p91 (P) ""Nsf (P) ] T (4-28)
dp

Angular position and angular velocity sensors are located on the hub, and colocated

position and velocity sensors are placed at stations PsI, Ps2, Ps3, Ps4 on arms 3 and 4 and

stations Ps5, Ps6, Ps7, Ps8 on arms I and 2. The sensor influence matrix H is

1 oT 0T

0 UoT (psi) T

H= 0 T(ps) OT (4-29)

0 0 r U (Ps5)

-0 Q T aT(N
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For the above configuration, then, n = 5 (Nsf = 2), a = 3 (actuators), s = 9 (sensors),

* B is a 5x3 (nxa) matrix, and H is a 9x5 (sxn) matrix. The gains Gp and G, are both 3x9

(axs) matrices, and the output vectors are

Yp 0 1 6, u (t,Ps), ... , u (t,Ps4), v (t,psS) ..... v (t,Ps8) ] T (4-30a)

-V = Yp (4-30b)

The locations Pul and Pu2 of the torque actuators and Psi, Ps2 .... Ps8 of the sensors

will be allowed to vary during the design iterations to satisfy design objectives of placing

closed-loop frequencies and damping ratios (o and ) while achieving desired reductions in

mass and/or control effort. Given the form Eq (3-3) of the control V, the control effort u is

defined as the Frobenius norm of the lOx 10 (2nx2n) matrix Guu given by

H T GT G H H T GT G

Guu = (4-31)HTG TGp H H TG T G H

since

UT u = XT Guu x (4-32)
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V. Optimization Technique

in order to do simultaneous (vice sequential) structure and control design, all desired

objectives will be treated as elements of a vector vice being weighted and summed to form a

scalar objective function. This vector approach precludes the use of existing, 'canned'

optimization algorithms. Instead, a minimum correction homotopy (MCH) technique will

be used (18-21, 23).

Mimimum Correction Homotopy Algorithm

The p elements yi of the objective vector y are the individual design objectives. The

MCH algorithm solves the set of non-linear equations

i* (Z*) - -Yi(Z) = 0 i = 1,2, ... , p (5-1)

where yi* is the ith desired goal and z is a d-vector of design variables. The first step is to

generate a homotopy family of problems by introducing 'portable' goal function values

defined by the linear map

yiP (CCH) = aH Yi* + (1 - OH) Yi (Zstart) i = 1, 2, ..., p (5-2)

with all the homotopy or continuation parameter. Replacing the original goals 'i* in Eq (5-

1) with the goals yP (atH) yields the homotopy family of non-linear equations

7i [Z(aH)l + { i (zstart) - Yi* (Z*) )}aH = Yi (ztar) i = 1, 2, ... , p (5-3)

At a H = 0, the solution to Eq (5-3) is Z = Zstart , and at acH = 1, Eq (5-3) becomes the

original system of Eq (5-1). Therefore, the desired solution is z(aH = 1).

5-i



Note that if a solution is achieved at OxH = 1, in multiobjective optimization terms the

* solution is dominated and not Pareto. Also notice that the second term on the left-hand side

of Eq (5-3) (term in { ) may be interpreted as a 'search direction' multiplied by a 'step size'

(CtH). This formulation has favorable convergence characteristics since iterations can be

* started with close estimates of the solution vector [z(oH)I at each continuation step as otH is

swept from zero to one. The 'step size' (increment in ctH) can also be changed adaptively

in each iteration, an attractive feature for highly non-linear objective functions.

For a given continuation step, 0XH, Eq (5-3) is usually underdetermined. A unique

correction vector Az is obtained by minimizing AzT WH Az subject to the truncated Taylor

series expansion of Eq (5-3),

(z+A.)= J(Z) + Az = 0 (5-4)

where WH is an arbitrary weighting matrix and J(Z) is defined as

Ji IZ(OtH)l = aH i* (Z*) + ( - OCH) Yi (zsa) - 7i [z(oH)] i = 1, 2, ..., p (5-5)

Conforming to the implicit local linearity assumptions, the weighted minimum norm

correction vector is

Az = W I ,] .J[] I (A) (5-6)Az 8= H 5.L~J [ZJ

where the pxd locally evaluated Jacobian is

* [~I1 [(5-7)
Starting with a neighboring solution at the previous step and using the above

* correction vector Az, z(aH) is refined recursively by
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0

z(oXH)new = Z(0XH)old + Az (5-8)

until local convergence is achieved [Eq (5-3) is satisfied] for each oXH. This is an 'inner

loop' on Az. Final convergence is obtained (an 'outer loop') by incrementing 0aH after each

local convergence until atH = 1. Table 5-1 summarizes the procedure.

This MCH algorithm has proven effective for eigenvalue placement problems and, by

its inherent reliance upon neighboring solutions, is also attractive for systematically

conducting trade studies or generating trade-off surfaces (18-21, 23). Junkins (24) also

showed that this minimum norm correction technique is theoretically equivalent to the

gradient projection formulation for constrained optimization problems.

Table 5-1. MCH procedure

Start Iterate Minimum
Iteration at Norm Correction To Obtain

Zstart = (0) 1[z(aHI)] = 0 -- Z(aH)

z((zHx) I [z(aH2)] = 0 -. z(ctH2)

Z((XHq~l) " .[(1)] = 0 --4 Z((lHq= 1)

with 0 < (XHI < aH2 < . . . < aHq= 1
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Vector Objective Function

• The structural design objective is taken to be the mass of the arms, 7t, defined as the

product of their thickness, height, length and mass density. Control design objectives are

the closed-loop frequencies oj and damping ratios i of the first five modes (one rigid-body

* rotation and four vibration modes) as well as the control effort U. The composite objective

vector is

= [01, 1, 2, 2, 0,)5 , 5 , t,i O]T (5-9)

The design variables are the arm thickness, height, actuator and sensor locations, and

elements of the feedback gain matrices. The design vector z is

= [ t, K , Pull Pu2, Psl Ps2, -1 Ps8, Gp(ll), Gp(1,2), .-., Gp(1,9), Gp(2,1),

., Gp(3,9), Gv(1,1), Gv(1,2), ..., Gv(l,9), Gv(2,1), --, Gv(3,9) ] T (5-10)

The arm length, L, and tip mass, ml, have also been included as design variables in

previous studies (21, 22). They were not included as such in this research for two reasons:

1) they are more likely to be specified due to higher-level mission requirements, such as

* keeping some equipment away from the hub, while the arm thickness and height are more

likely to be available as design options to support the tip masses, and 2) excluding arm

length and tip mass reduced the dimensionality of the problem and the consequent

* computational burden without detracting from the utility and validity of the design method.

Results of studies with various combinations of the elements of Y will be presented in

the next chapter.

41 Derivatives

As a matter of implementation, the full 12x66 (pxd) matrix [8J8z was used in all

design iterations, even though all 12 'i* were not specified. The appropriate Ji were set to

* zero in Eq (5-6) to calculate correction vectors Az. This was acceptable since dominated

5-4



solutions ((XH = 1) were sought vice Pareto solutions, which seek zero gradients to

maximize (XH. While more derivatives were calculated than necessary, all were obtained

analytically (closed-form) vice numerically. If numerical differentiation had been required,

the additional computational burden would have made it worthwhile to incorporate the logic

to manipulate the matrices according to the specific objective vector under consideration.

To detail the derivatives, first expand the right-hand side of Eq (5-7) where the yi are

as given in Eq (5-9):

751  6Z Yl Zd
5 z, 43z 2  8zd

S 72 672 572

62I = 8z 1  6z 2  
6 zd (5-11)

* Yp &'Y ___..

8 z1  8z 2  8zdJ

Since nt = Pd Kc L, the required derivatives are simply
0

871 87t Yi 81 87t

- - = PdKL, z - K = Pd'tL (5-12a)
88z 2  8

0 = 0, i = 2,3, "",d=66 (5-12b)

8 zi

For the rates of change of the closed-loop frequencies and damping ratios, recall Eq

(3-13) and let zk be any element of the design vector z:
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8X, 8a *o
= + 8i 0 (5-13a)

5 Zk 8Zk 6 Zk

.k (az k + , zk  (5-13b)• szk ( 2 + (02 )312

To obtain the BX/Szk, differentiation of Eq (3-12a) leads to, for i = 1, 2, ..., 2n,

S-fT 5 A i (5-14)

8zk SZk

Given the form of Ac, in Eq (3-10),

0 0

8 = M(Kc, ( s _c, (5-15a)

S zj8

[Kc! and Cc, were defined in Eq (3-6)]. M and K are functions of t and K only (z1 and z2).

Recalling the symmetry of those matrices given in Eqs (4-24) and (4-25), the expressions

for the non-zero derivatives are, for i = 1, 2, ..., Nsf and j = 1, 2, ..., Nsf,
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8 M (1,) 4P1CII(5-16a)

8(,i1 2 2PdKICo(p + R) gi (p) dp (5-16b)

8 M z61 ,jlL

*8 zM(+, 2+1 - Pd K J0  i (p) gj (p) dp (5-16c)

8 K z61,jl1 2 LOP t

8K~i+1,j+1f -i ;J ; (p) j (p) dp (5-16d)

-11 Pd 'UI (5-17a)
8 Z2

3

8M 1i 1 -2 2 Pd tJ(p +R) gi (p) dp (5-17b)

8 M (i+1, j+ 1) dpL-1c

5 8K (i+1,J+l) 3- i p (p) dp (5-1 7d)
8 Z2

The rest of the components of Kci and Cc, are not functions of 'r or Xc. Recalling the

definition of the design vector z [Eq (5- 10)],

B = B (Pul' Pu2) =B (z3 , Z4) (5-18a)

*H = H (Psi' Ps2' NO Ps8 H (z5, z6, -.. , Z12) (5-18b)

GP= Gp (Z13, Z14 , .. ,z39) (5-18c0

=i Gv (z4o, z4 1,...z 66) (5-18d)
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Given the forms of B and H [Eqs (4-27) to (4-29)], the only non-zero elements of [IB/Sz k]

* and [BWHzk] are in the positions corresponding to the particular zk:

8 B ,,-- 2 Ui(Zk), k = 3,4 (5-19a)

= p(zk), k = 5, 6,..., 12 (5-19b)
8zk 4i(k

i (P) =  i )i+l nPP
i (P) = C I (-1 + sin L (5-19c)

2(
A* (P = (T)L[ (-I1)i+1 + Cos (L(5-19d)

Note i = 1, 2 (i = 1, 2, ..., Nsf; Nsf = 2) and n is the mathematical constant, not the arm

* mass, in Eqs (5-19).

Even more simply, the elements of [8Gp/Z k] and [8Gv/BZk] are all zeroes except for

a one in the position corresponding to the particular zk.

* Finally, recalling the form of the control effort matrix Guu [Eq (4-31)] and denoting

the magnitude or Frobenius norm of Guu as IIGuuIl,

1

* 2 1 10 1 10 [ Guu (ij) 2 (5-20a)
Si= I j=lI

G10 10 f(ij ) ( 5 -2 0 b
8 Zk ) i=l 1
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Given the functional dependencies in Eqs (5-18) and the expressions for [SH/8 zk] in Eqs

(5-19b) and (5-19c), the elements of [8Guu/Bzk] are

5 ,,z. GpT GpH + 5 H--),G'- TOGvH +L T T
8 Guu
8 zk

H [TJ G GpH + G Gv H+

k = 5, 6,..... 12 (5-2 1a)

( Gp H THm  G )

HT G + G 8Zk H _-- GvH

S8zk

k = 13, 14,..... 39 (5-21 b)
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to1 [HT GT ( z )H

8 Gu uk

HkTJ - G _GH )I[ I H]
* 8 ,Zk 8 ZkL Z

k = 40,41, ... 66 (5-21c)

Design Procedure

Now that all necessary equations have been detailed, the following are the steps to go

through one 'inner loop' of the design procedure (Table 5-1), starting with aH = XHI =

0.1.

1. Initialization - set constants, read initial variable values from input files, etc.

2. Calculate system matrices - M [Eqs (4-24)], K [Eqs (4-25)], B [Eqs (4-27),

(4-28), (5-19c)], C [Eq (3-4)], H [Eqs (4-29), (4-17)], Acl [Eqs (3-10), (3-6)].

3. Calculate right and left eigenvalues and eigenvectors of Ac, [Eq (3-11)]; sort in

order of increasing frequency and normalize eigenvectors [Eq (3-12)].

4. Calculate objective vector y [Eq (5-9)] - frequencies and damping ratios given

by Eq (3-13), control effort 1i by Eqs (5-20a) and (4-31), and mass t = Pd T c L.

5.. Calculate gradients.

a. Partial derivatives of mass and stiffness matrices [Eqs (5-16) and (5-17)].

b. Partial derivatives of control and sensor influence matrices [Eqs (5-19)].

c. Partials of Ac] [Eqs (5-15), (3-6)].

d. Partials of closed-loop eigenvalues [Eq (5-14)).

e. Partials of closed-loop frequencies and damping ratios [Eqs (5-13)].
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f. Partial derivatives of mass [Eqs (5-12)].

g.. Partials of control effort [Eqs (5-20), (5-21), (4-3 1)].

6. Form gradient matrix [5iJ/Sz [Eqs (5-7), (5-11)] from results of steps (5-e) thru

(5-g) above.

* 7. Calculate correction to design vector [Eqs (5-6), (5-5)].

8. Check that corrections Az will not violate any constraints on elements ofz (for

example: thickness, height, sensor and actuator locations). If any will be violated, augment

* ~J with the amount(s) of the violation(s), augment [BJj8z] with a -1 in the appropriate

location(s) [row(s) and column(s)], and re-calculate correction vector Az as in step (7)

above.

9. Calculate magnitude of correction vector ( I Az I; square root of the sum of the

squares of the elements).

10. If I Az I < z1oI (convergence limit), this inner loop has converged [Eq (5-3) is

satisfied at this value of cXHI. Increment CXH and begin new inner loop at step (7) above.

11. If inner loop has not converged, calculate new design vector z [Eq (5-8)] and

return to step (2) above for another iteration.

Once the inner loop has converged [step (10)] at ctH = 1, the homotopy family of

equations [Eq (5-3)] has become the original system of Eq (5-1), and the procedure has

converged to the desired objective vector .
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VI. Integrated Structural/Control Optimal Design Results

0

Two cases were considered, most readily characterized by the first mode eigenvalues.

Case 1 is high frequency, low damping. Case 2 is low frequency, high damping. The

desired oi* and 4i* were not specified for all five modes. The eigenvalue portions of the

objective vectors for the two cases are

0 Case 1 • * [ 0oi1 = 3 rad/sec, 41" - 0.03, C2* = 0.03, C3* = 0.03,

(1*= 0.01, C5* = 0.01 ]IT (6-1)

Case 2 y2* = (o0* = 0.3, 02" =4.5. o3 = 8.3, 1" = 0.7,

= 0.03, C= 0.03, C4* = 0.01, 5* = 0.01 T (6-2)

Note that this is not pole placement but rather VArtal specification of the eigenvalues for the

* first fi ,e normal modes of vibration.

All elements of the gain matrices Gp and G, were initially set to zero except for

Gp(1,1), which was set to 0.001 to prevent the rigid-body eigenvalue being identically

*0 zero. Initial actuator locations were Pul = Pu2 = L/2. Initial sensor locations were Psi =

Ps5 = L/4, Ps2 = Ps6 = L/2, Ps3 = Ps7 = 0.7L, Ps4 = Ps8 = 0.9L. Structural parameters

were as given in Table 4-2. For Case 2, the arm length and tip mass were adjusted to 1.12

* m (3.67 ft) and 2.90 Kg (0.19871 slug), respectively, to place the second- and third-mode

frequencies (21).

The weighting matrix WH in Eq (5-6) was nominally set to the identity matrix.

* Typical step size and convergence limits were A(XH = 0.1, Az = 0.0001. However, the

step size, weights and limits on the sensor and actuator locations were varied to aid

convergence, particularly for large mass and control effort reductions.
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Four types of designs were accomplished: 1) (partial) eigenvalue placement [YI* and

*y2* as given in Eqs (6-1) and (6-2)], 2) eigenvalue placement with mass reduction, 3)

eigenvalue placement with control effort reduction, and 4) eigenvalue placement with mass

and control effort reduction. The same (partial) eigenvalue placement was used for all

designs within each case. The designs are identified by case number (first digit) and

amount of mass and/or control effort reduction. For example, design 1-Base is Case 1,

baseline (no mass or control effort reduction), design l-MIO is Case 1, 10% mass

reduction, design 2-CE25 is Case 2, 25% control effort reduction, and design 2-MCE50 is

Case 2, 50% mass and control effort reduction.

Final values for elements of the design vector z are given in Appendices A ('C, K, Pul,

Pu2, Psi, Psi' -- Ps8 for all designs) and B (elements of Gp and Gv for designs 1-Base,

l-M50, 1-CE50, 1-MCE50 and 2-MCE50). Appendix C details the weighting matrices

WH for all designs.

Eigenvalue Placement

While closed-loop frequencies and damping ratios are certainly not complete

specifications of a control system, they are familiar, easily understood characteristics,

particularly for top-level concerns of structure/controller interaction. Solely placing the

frequencies and damping ratios [as given in Eqs (6-1) and (6-2)] was not the purpose of

this research, but is common to all integrated structural/control designs. Designs 1-Base

and 2-Base were accomplished for Cases I and 2, respectively, and the resulting control

efforts u were calculated [Eqs (4-31) and (5-20a)) and taken as the baseline values [Case 1:

12,500; Case 2: 851. Note that while t does not have a physical interpretation, such as

torque, it is still a valid measure of the amount of control exerted by the system and, hence,

relative comparisons of i) are meaningful. Actual control torques require specification of

the state vector.
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Figures 6-1 and 6-2 are typical trajectories of the eigenvalues (Cases 1 and 2,

* respectively) during the optimization process as (H was swept from (XH = 0 (Z = _start to

ocH = 1 (z = z*). These trajectories are representative of those for all of the designs.

Mass Reduction
For integrated structural/control design, the previous (partial) eigenvalue placement is

accomplished simultaneously with reduction of the arm mass, 7E. The objective vectors YI*

and -y2* were augmented with the desired arm mass, t*. Mass reductions of 10, 25 and

50% were obtained while placing the closed-loop eigenvalues as specified in Eqs (6-1) and

(6-2). Mass reductions beyond 50% were not attempted but are certainly possible up to

that corresponding to minimum limits on the arm dimensions, albeit at the expense of

higher control efforts. Control efforts for the reduced-mass designs were calculated and

are tabulated in Table 6-1. As expected, maintaining the closed-loop characteristics while

reducing arm mass generally requires more control effort, although design I -M25 (Case 1,

25% mass reduction) is a fortunate exception, apparently due to more favorable sensor

placements (Appendix A).

Control Effort Reduction

As a precursor to reducing both mass and control effort, control effort was reduced

while holding the arm mass fixed. The objective vectors y* and y2* were augmented with

the desired control effort, u*, and control effort reductions of 10, 25 and 50% of the

appropriate baselines were obtained while placing the closed-loop eigenvalues as specified

in Eqs (6-1) and (6-2). The reductions were accomplished primarily through sensor

* placement (Appendix A). Reductions beyond 50% were not attempted.

0
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Table 6-1. Control efforts for reduced-mass designs

* Design % Mass Control Effort
# Reduction 3

1-Base 12,500
l-M10 10 13,500

1-M25 25 11,000

l-M50 50 32,400

2-Base 85
2-M1O 10 339
2-M25 25 1,441
2-M50 50 4,323

Mass and Control Effort Reduction

Since the reduced-mass designs essentially assumed infinite available control effort, a

more realistic problem is to augment the basic yl* and y2* with the desired arm mass and

desired control effort. For Case 1, reductions of 10, 25 and 50% in both mass and control

effort were obtained while placing the eigenvalues per Eq (6-1).

For Case 2, the arm length and tip mass had been adjusted to place the second- and

third-mode frequencies (21) and the first-mode frequency is very low (0.3 rad/sec).

Consequently, the baseline control effort (required to satisfy Y2*) is also very low, so low

that only 5% reductions in mass and control effort could simultaneously be achieved

(design 2-MCE5). Control efforts much larger than the baseline were required to satisfy

eigenvalue placement with simultaneous mass reduction, as shown in Table 6-1. These

control efforts were subsequently reduced by the same percentage as the mass, i.e., the

control efforts corresponding to 10, 25 and 50% mass reductions were reduced by 10, 25

and 50%, respectively (designs 2-MCE10, 2-MCE25, 2-MCE50).
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Spillover Sensitivity

Although design goals of mass and/or control effort were met while achieving desired

closed-loop frequencies and damping ratios, the design model only included the first five

normal modes. Model-order truncation, while a necessary evil for computational purposes,

leaves the designs susceptible to spillover from the higher-order unmodeled or residual

modes. All designs achieved previously (Appendix A) were evaluated against 7-, 9- and

11 -mode evaluation models. Figures 6-3 through 6-7 are plots of the modes' damping

ratio for designs 1-Base, l-M50, 1-CE50, I-MCE50 and 2-MCE50 (Case 1: baseline,

50% mass reduction, 50% control effort reduction, 50% mass and control effort reduction,

and Case 2: 50% mass and control effort reduction) to show the extreme spillover

sensitivity of the designs. The modes of the design model (1-5) are those whose damping

ratios were specified during the design process. The 'baseline' damping (solid bar) is: 1)

the specified damping ratio per Eq (6-1) for modes 1-5, and 2) the open-loop damping

ratios for the residual modes (slightly stable due to the assumed proportional damping).

All the designs had at least one mode go unstable, while many unstable modes was

more of the norm. Instability was not limited to the residual modes; modes in the design

model were also driven unstable, as with modes 2 and 5 in Figure 6-6 and mode 4 in

Figure 6-7. Even if the modes in the design model were not driven unstable, they were

often subject to wild variations in damping ratio as soon as any higher-order modes were

included in the evaluation model (modes 4 and 5 in Figure 6-5, mode 4 in Figure 6-6).

There was no quantifiable correlation of spillover sensitivity with mass and/or control effort

reduction, either within or across the two cases, other than all designs were very

susceptible.
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VII. Spillover Control

The minimum correction homotopy technique described in Chapter V has

successfully been used for integrated structural/control design as evidenced by the designs

achieved (listed in Appendix A). However, in light of the design model order truncation

and lack of any robustness criteria in the design objective vector, the extreme spillover

sensitivity of the designs is not surprising. Although spillover does not have to be

destabilizing, it will certainly affect system performance. Thus, in order to provide a

complete technique for integrated structural/control design, spillover control is also

addressed. Two approaches were considered: simple constraints and modal suppression.

Constrained Solutions

The first approach to control spillover was simply to increase the order of the design

model from 5 to 11 modes. No attempt was made to place the eigenvalues of the additional

modes, 6-11; they were simply constrained to have damping ratios > 0.001. In effect, this

was an attempt to simply meet the design objectives given in Chapter VI while guaranteeing

stability through 11 modes; i.e., push off the onset of spillover to modes 12 and beyond,

hoping that these much higher-frequency modes have less effect on the modes of the

original design model (1-5). Or, it may be thought of as a 'brute force' attempt to build a

deadband into the controller over the frequency range covered by modes 6-11 (- 52-840

rad/sec).

As a matter of implementation, the objective vector was expanded to include the first

11 modes

= [)I, 1, (02, C2, "", 011, I I, 7E , '0]T  (7-1)
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[mass (n) and control effort (u) were included as appropriate]. Even though all 24 y/i* were

not specified, the full 24x66 matrix [8,L/5zJ was used in all design iterations. The

appropriate Ji were set to zero in Eq (5-6) to calculate correction vectors Az. Since this

approach was only applied to the Case I designs, the Ji corresponding to o 2, (o3, .... 011

were all set to zero. The spillover control then set the Ji corresponding to i, i = 6, 7, ...,

11 equal to zero if that i was > 0.001. Finally, design iterations were started with the

'converged' solutions from the Case 1 designs, i.e., the final designs were 'post-

processed' to control spillover.

The new designs (with spillover control) were then evaluated against 13-, 15-, 17-,

19- and 21-mode evaluation models. Figures 7-1 and 7-2 are plots of the modes' damping

ratios for designs 1-Base and I-MCE50 (Case 1, baseline and Case 1, 50% mass and

control effort reduction) with the spillover control included. Figure 7-1 (design 1-Base)

shows the design stable and not too much variation in damping ratio through 21 modes.

However, this design was the exception rather than the rule. The rest of the spillover-

control designs exhibited characteristics similar to the non-spillover-control designs: all

had multiple modes go unstable, including the spillover-controlled modes (6-11), and the

damping ratios were often subject to wild variations with changing evaluation model size.

The 25 and 50% mass and control effort reduction designs (1-MCE25, 1-MCE50) also had

modes in the design model driven unstable (modes 2 and 5 in Figure 7-2).

In short, the simple constraint approach to spillover control did delay the onset of

instability to modes 12 and higher, but the designs still exhibit far too much spillover

sensitivity. Model-order truncation effects were not mitigated by this technique except for

one fortunate design (I-Base), and that very exception points out the unreliability of this

approach to control spillover.
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Modal SupDression

A modal suppression technique (25, 26) was attempted next. While the technique has

also been used to design decoupled controllers (27-29), it is used here to eliminate

observation spillover and recover stability.

Technique. Recalling the system of Eq (3-1), let 4fi2 and 4i, i = 1, 2, ..., n be the

eigenvalues and eigenvectors of the associated eigenvalue problem

Vi2 M Oi = K Oi (7-2)

Define (D as the matrix with 0i as the ith column, where the 0i have been normalized with

respect to the mass matrix,

(*)T M D = I (7-3)

i.e., [ is the system modal matrix. Also define the coordinate transformation

w = (I 1 (7-4)

where !1 is an n-vector of modal coordinates.

The second-order system of Eq (3-1) can now be written in first-order state-space

form as

x = Ax + D (7-5)

where

x =,x = (7-6)
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00

A = (7-7)r-W2J F-24WJ

D = (7-8)
( TB

[_y 2J is a diagonal matrix of open-loop modal frequencies squared, and r-24jiJ is a

diagonal damping matrix. The output y and control u are

Hdl 0

= x (7-9)
0 HO

P= G G], Iy (7-10)

To eliminate observation spillover, first define a new output q as

a = - Y. (7-11)

The matrix F will be chosen such that q does not contain any information regarding modes

to be suppressed, say modes 6-r. In other words, q will be a lintar combination of the s-

elements of the output y such that only modes 1-5 are observed. Since there are nine

sensors (s=9), if five modes are to be controlled, a maximum of four modes can be

suppressed (i.e., r=9, suppress modes 6-9). There must be as many independent 'sources

of information' (elements of the new output g) as modes to be controlled.

The columns of HO1 correspond to observations of modes:

HD = E [l - (7-12)
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To suppress observations of modes 6-9, F must be such that

IF = "-6-9 = 0 (7-13)

Singular value decomposition is used to determine the null space of E6.9T and 1 solved for

* by transposing Eq (7-13)

6-9 T (7-14)

* The new control becomes

u = [Gpi Gv ]I =i F

* [l 0
- [Gp Gv ] [ (7-15)

-0 rFH

Note that the gain matrices G and G. must be reduced in size accordingly. For

suppression of modes 6-9, Gp and Gv are 3x5 matrices.

Results. The 'converged' solutions from eigenvalue placement, 50% mass reduction,

* 50% control effort reduction, and simultaneous 50% mass and control effort reduction

were 'post-processed' to eliminate observation spillover: 1) structural sizes and sensor and

actuator locations were held fixed, 2) F was calculated to suppress observation of modes

6-9, and 3) the MCH algorithm was re-run with the elements of the 3x5 Gp and Gv gain

matrices the only variables adjusted to recover the closed-loop eigenvalue placement.

Control effort was not specified (i.e., the desired objective vectors were as shown in Eqs

(6-1) and (6-2), unaugmentedj and the 5-mode design model was used.

Tables 7-1 through 7-3 detail th'- damping ratios obtained with up to a 19-mode

evaluation model for designs 1-Base, I-MCE50 and 2-MCE50 (Case 1, baseline; Case 1,

50% mass and control effort reduction; Case 2, 50% mass and control effort reduction).
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However, all modal-suppression designs exhibit the same favorable characteristics. The

controlled modes' (1-5) damping varies only slightly; there appears to be some

'conservation of damping ratio' within mode pairs (2&3, 4&5) at higher-order evaluations.

The suppressed modes (6-9) remain at their open-loop damping ratios, as they should;

since the controller can't 'see' those modes, it doesn't affect them. The assumed slight

amount of proportional damping keeps modes 6-9 stable. Not only are the controlled and

suppressed modes much more well-behaved, but the residual modes' (10-19) damping

ratios are relatively immune to changes in the order of the evaluation model. There is now

essentially one decade of deadband (modes 6-9, - 52-530 rad/sec) above the controller

bandwidth (modes 1-5, 0-52 rad/sec).

Two designs were also attempted suppressing only modes 6-7 (note Gp and Gv were

3x7 matrices). However, modes 8-10 remained unstable, whereas when modes 6-9 were

suppressed, the onset of spillover instability was delayed until mode I t the earliest (for

those two specific designs). As one might expect, making full use of the four extra sensors

(suppressing modes 6-9) gave more robust designs than only putting in two modes of

deadband (modes 6-7).

Finally, Table 7-3 shows the design stable through 19 modes. This fortunate (as

opposed to planned) result points out the necessity to always check through all modes of

interest to see if residual modes are stable or unstable - spillover does not necessarily

always cause instability.
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Table 7-1. Damping ratios with modal suppression, design 1-Base

(Case 1, baseline)

# of Modes in Evaluation Model

Mode #1 1 19

1 0.03 0.0299 0.03 0.0301 0.0301 0.0301

2 0.03 0.0299 0.03 0.03 0.03 0.03

3 0.03 0.0301 0.03 0.03 0.03 0.03

4 0.01 0.0106 0.0105 0.0104 0.0103 0.0102

5 0.01 0.00973 0.00978 0.00983 0.00985 0.00986

6 0.000799 0.000799 0.000799 0.000799 0.000799 0.000799

7 0.000803 0.000803 0.000803 0.000803 0.000803 0.000803

8 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016

9 0.00161 0.00161 0.00161 0.00161 0.00161 0.00161

10 0.0324 0.0327 0.0323 0.0322 0.032

11 0.0357 0.0346 0.0349 0.035 0.0351

12 0.0166 0.0165 0.0164 0.0164

13 -0.05 -0.0499 -0.0499 -0.0496

14 -0.00609 -0.00608 -0.0066

15 -0.00788 -0.00786 -0.00751

16 -0.00314 -0.00314

17 0.00874 0.00875

18 --0.0287

19 0.0141
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Table 7-2. Damping ratios with modal suppression, design 1-MCE50

(Case 1, 50% mass and control effort reduction)

# of Modes in Evaluation Model

1 0.03 0L 02 15 1 12

1 0.03 0.029 0.029 0.0292 0.0295 0.0295

2 0.03 0.0299 0.03 0.0298 0.0298 0.0297

3 0.03 0.0297 0.0296 0.0296 0.0296 0.0296

4 0.01 0.0113 0.0114 0.0113 0.0111 0.0111

5 0.01 0.00998 0.00998 0.00998 0.00998 0.00998

6 0.000867 0.000867 0.000867 0.000867 0.000867 0.000867

7 0.000869 0.000869 0.000869 0.000869 0.000869 0.000869

8 0.00171 0.00171 0.00171 0.00171 0.00171 0.00171

9 0.00172 0.00172 0.00172 0.00172 0.00172 0.00172

10 0.0755 0.0756 0.0755 0.0753 0.0753

1 1 0.00877 0.00876 0.00876 0.00876 0.00876

12 0.00609 0.006 0.00591 0.00591

13 0.00694 0.00703 0.00706 0.00708

14 0.00443 0.00444 0.00444

15 -0.00784 -0.00747 -0.00753

16 -0.035 -0.0348

17 0.00924 0.00924

18 0.0121

19 0.0199
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Table 7-3. Damping ratios with modal suppression, design 2-MCE50

(Case 2, 50% mass and control effort reduction)

# of Modes in Evaluation Model

Mode# 9 11 a 1a 12

1 0.7 0.699 0.7 0.7 0.7 0.7

2 0.03 0.0297 0.0298 0.0298 0.0298 0.0298

3 0.03 0.0306 0.0305 0.0304 0.0304 0.0305

4 0.01 0.00602 0.00642 0.00691 0.00657 0.00646

5 0.01 0.0138 0.0134 0.013 0.0133 0.0134

6 0.000958 0.000958 0.000958 0.000958 0.000958 0.000958

* 7 0.00096 0.00096 0.00096 0.00096 0.00096 0.00096

8 0.00189 0.00189 0.00189 0.00189 0.00189 0.00189

9 0.00189 0.00189 0.00189 0.00189 0.00189 0.00189

* 10 0.00404 0.00406 0.00401 0.00407 0.0041

1 1 0.00363 0.00355 0.00361 0.00354 0.00349

12 0.00554 0.00555 0.00557 0.00558

13 0.00563 0.00562 000561 0.0056

* 14 0.007 0.00709 0.00712

15 0.00723 0.00705 0.00697

16 0.0119 0.0121

17 0.0116 0.0115

• 18 0.0149

19 0.0151
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VII._I Conclusions

This dissertation has presented an approach for integrated structural/control design

and applied it to a flexible space structure (Draper/RPL configuration) and its active control

system (direct output feedback). The primary contribution has been to treat the problem in

an integrated or simultaneous fashion vice sequential design iterations on the two separate

problems.

A minimum correction homotopy (MCH) technique was used to simultaneously

optimize a vector of objective functions, including closed-loop damping ratios and

frequencies, structural mass, and control effort. Hence, designs were achieved via

multiobjective optimization vice forming a scalar objective via weighting and summing the

individual objectives. The MCH technique has heretofore not been used to solve

multiobjective optimization problems, nor has structural design (reduce mass) been

combined with control system design at such a detailed level (place closed-loop frequencies

and damping ratios, reduce control effort). [Note that the control system design was not

pole placement, but specification of all damping ratios and some frequencies of interest, as

shown in Eqs (6-1) and (6-2)].

Designs with up to 50% reductions in mass and/or control effort were obtained while

achieving desired closed-loop characteristics for the first five normal modes of vibration.

However, the designs, based on a reduced-order structural model, are easily driven

unstable by spillover from higher-order unmodeled modes. A modal suppression

technique completed the design approach by eliminating observation spillover from modes

6-9 and providing one decade of deadband above the controller bandwidth. The resultant

designs are much less sensitive to the effects of model-order truncation. Additional

deadband could easily be obtained by controlling fewer modes or simply adding sensors.
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IX. Recommendations

The designs obtained in this research are dominated vice Pareto solutions. That is, all

elements of the objective vector y were simultaneously achievable; no trade-off amongst

the elements of the objective vector (yi, individual objectives) was done to arrive at some

subjective 'best' solution. Attempts to use both utility function and goal programming

techniques as described in Chapter II to find Pareto optimal solutions to this multiobjective

optimization problem were unsuccessful. In fact, mass and control effort were never

included as objectives, since convergence for the sub-problem of eigenvalue placement was

never achieved. A variety of weights and goals were tried, not only with closed-loop

frequencies and damping ratios as design objectives but also using the real and imaginary

parts of the closed-loop eigenvalues directly as the objectives in an attempt to at least reduce

the nonlinearities of the problem, but all to no avail.

The first, natural extension of this research would be to use the minimum correction

homotopy (MCH) design approach to find Pareto solutions. The reported body of research

on multiobjective optimization and Pareto solutions, albeit not for integrated

structural/control design but rather dealing with only one discipline, suggests utility

function, goal programming, and/or game theory techniques (2-11, 13-17). Since all

reported techniques involve some form of weighting and summing individual design

objectives, direct application of the MCH algorithm may be difficult. However, given the

excellent convergence characteristics of the MCH algorithm to dominated solutions, it

seems worthwhile to attempt to use it to find Pareto solutions.

Whether dominated or Pareto solutions are sought, a valid question is: what are the

best objective functions to use for integrated structural/control design? The design

objectives used in this research (closed-loop frequencies and damping ratios, structural

9-1
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mass, control effort), although certainly valid and important system characteristics, can

certainly be improved upon. Additional objectives could be eigenvectors, robustness,

structural stresses, displacements, etc. Any design improvements would then have to be

weighed against the corresponding computational burdens and difficulties.

Any or all of the assumptions and parameters inherent in this proof-of-technique

could be investigated. The design approach certainly needs to be examined with respect to

much higher-dimensional problems, allthough no stumbling blocks other than

computational loading are immediately foreseen. Using the technique with different

structural models and/or control laws should not only verify the technique's utility and

validity but also yield great varieties of design options and trade-offs.

Finally, the modal suppression technique could be incorporated into the main design

iteration loop (vice being a 'post-processing' algorithm to recover stability) to see if such

inclusion achieves required stability with lower control gains, control effort or sensitivity to

uncertain parameters.

92
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Apnendix A: Final Design Vector Values
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A12nendix B: Final Design Gains
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Design 1-Base with modal suppression

-20.9 -0.344 -1.80 -2.30 -1.02
Gp -37.3 -0.929 -6.16 -7.69 -3.82

-43.7 1.67 2.36 3.74 1.38

-0.490 1.39 0.138 -1.24 0.471
Gv  0.075 2.24 2.15 -0.748 -0.394

-2.87 0.691 -1.15 1.10 -0.361

Design 1-M50 with modal suppression

-16.4 -0.286 -2.27 -0.729 -4.25
Gp -27.1 0.353 0.747 0.363 -3.58

-25.7 -0.471 1.64 0.127 4.28

-1.38 -0.519 -0.474 -1.15 -1.91

Gv  0.862 0.110 0.159 0.094 0.093
-0.633 -1.03 -0.828 0.343 -0.148

Design 1 -CE50 with modal suppression

-22.8 1.91 -0.658 -2.16 0.856

Gp -41.4 1.60 -2.66 -2.41 1.92
-42.1 -5.27 -2.61 5.74 0.365

-1.78 -1.54 0.998 1.21 -0.918

Gv  -8.03 -1.54 0.838 1.65 -0.097
3.49 0.011 0.147 0.434 0.313
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Design 1-MCE50 with modal suDpression

0
-18.3 -0.092 -1.48 4.64 -1.46

Gp -30.6 -4.05 -3.26 3.83 -12.5

-22.5 -3.67 -1.58 -1.46 -7.66

-0.857 -3.49 -3.72 -1.26 -8.23
IV  5.62 0.436 -0.234 -0.159 0.296

1.08 -0.124 -1.36 0.256 -1.49

Design 2-MCE50 with modal supression

-166 -3.28 1.98 2.26 -2.89
Gp 74.0 -60.4 18.8 23.2 50.9

4.62 128 -49.5 -61.4 -47.6

-22.1 -19.4 5.50 7.15 16.9
Gv  14.8 -27.8 10.8 14.2 13.0

-19.0 -12.8 1.88 2.14 17.8
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Appendix C: Weighting Matrices

All weighting matrices WH [in Eq (5-6)] were diagonal matrices. For all but two

designs, the matrices were identity matrices.

For design I-MCE50, the first 12 diagonal elements were 1, 1, 10, 10, 10, 10, 100,

100, 10, 10, 100, 100; the rest were ones - i. e., the elements of WH corresponding to the

actuator locations and two inboard sensor locations on each arm (Pul, Pu2, Psi, Ps2, Ps5,

Ps6) were 10, and the weights on the two outboard sensors on each arm (Ps3, Ps4, Ps7,

Ps8) were 100.

For design 2-CE50, the first 12 diagonal elements were 1, 1, 0.1, 0. i, 0.1, 0.1, 0.1,

0.1, 0.1, 0.1, 0.1, 0.1; the rest were ones - i.e., the elements of WH correspoliding to the

sensor and actuator locations were all 0.1.

C. I

0



Bibliography

1. Weisshaar, T.A., J.R. Newsom, T.A. Zeiler and M.G. Gilbert. "Integrated
Structure/Control Design - Present Methodology and Future Opportunities,"
Proceedings of the 15th Congress of the International Council of the Aeronautical
Sciences. 1119-1128. London, September 7-12, 1986.

2. Koski, J. "Multicriterion Optimization in Structural Design," New Directions in
Optimum Structural Design, Proceedings of the Second International Symposium
on Optimum Structural Design, 11 th Office of Naval Research Naval Structural
Mechanics Symposium, edited by E. Atrek, R.H. Gallagher, K.M. Ragsdell and
O.C. Zienkiewicz. 483-503. University of Arizona, Tucson AZ, October 19-22,
1981. New York: John Wiley & Sons, 1984.

3. Jendo, S., W. Marks and G. Thierauf. "Multicriteria Optimization in Optimum
Structural Design," Large-Scale Systems, 9: 141-150 (October 1985).

4. Koski, J. and R. Silvennoinen. "Norm Methods and Partial Weighting in
Multicriterion Optimization of Structures," International Journal for Numerical
Methods in Engineering, 24: 1101-1121 (June 1987).

5. Koski, J. "Defectiveness of Weighting Methods in Multicriterion Optimization of
Structures," Communications in Applied Numerical Methods, 1: 333-337
(1985).

6. Dlesk, D.C. and J.S. Liebman. "Multiple Objective Engineering Design,"
Engineering Optimization, 6: 161-175 (1983).

7. Chankong, V. and Y.Y. Haimes. Multiobiective Decision Making: Theory and
Methodology. New York: Elsevier Science Publishing Company, 1983.

8. Cohon, J.L. Multiobiective Programming and Planning. New York: Academic
Press, 1978.

9. Goicoechea, A., D.R. Hansen and L. Duckstein. Multiobiective Decision Analysis
with Engineering and Business Applications. New York: John Wiley & Sons,
Inc., 1982.

10. Zeleny, M. Multiple Criteria Decision Making. New York: McGraw-Hill Book
Company, 1982.

11. Salukvadze, M.E. Vector-Valued Optimization Problems in Control Theory. New
York: Academic Press, 1979.

12. Stadler, W. "Multicriteria Optimization in Mechanics (A Survey)," Applied
Mechanics Reviews, 37: 277-286 (March 1964).

BIB - I



13. Rao, S.S., V.B. Venkayya and N.S. Khot. "Optimization of Actively Controlled
Structures Using Goal Programming Techniques," International Journal for
Numerical Methods in Engineering. 26: 183-197 (January 1988).

14. Rao, S.S. "Game Theory Approach for Multiobjective Structural Optimization,"
Computers & Structures, 25: 119-127 (1987).

15. Carmichael, D.G. "Computation of Pareto Optima in Structural Design,"
International Journal for Numerical Methods in Engineering. 15: 925-929 (June
1980).

16. Duckstein, L. "Multiobjective Optimization in Structural Design: The Model
Choice Problem," New Directions in Optimum Structural Design, Proceedings of
the Second International Symposium on Optimum Structural Design, 11 th Office of
Naval Research Naval Structural Mechanics Symposium, edited by E. Atrek, R.H.
Gallagher, K.M. Ragsdell and O.C. Zienkiewicz. 459-481. University of
Arizona, Tucson AZ, October 19-22, 1981. New York: John Wiley & Sons,
Inc., 1984.

17. Rao, S.S. "Multiobjective Optimization in Structural Design with Uncertain
Parameters and Stochastic Processes," AIAA Journal, 22: 1670-1678 (November
1984).

18. Rew, D.W. New Feedback Design Methodologies for Large Space Structures: A
Multi-Criterion Optimization Approach. PhD Dissertation. Virginia Polytechnic
Institute and State University, Blacksburg VA, 1987.

19. Rew, D.W. and J.L. Junkins. "Multi-criterion Approaches to Optimization of
Linear Regulators," The Journal of the Astronautical Sciences, 36: 199-217
(July-September 1988).

20. Junkins, J.L. and D.W. Rew. "Unified Optimization of Structures and
Controllers," Large Space Structures : Dynamics and Control, edited by S.N.
Atluri and A.K. Amos. 323-353. Berlin: Springer-Verlag, 1988.

21. Bodden, D.S. and J.L. Junkins. "Eigenvalue Optimization Algorithms for
Structure/Controller Design Iterations," Journal of Guidance, Control, and
Dynamics, 8: 697-706 (November-December 1985).

22. Muckenthaler, T.V. Incorporating Control into the Optimal Structural Design of
Large Flexible Space Structures. MS Thesis, AFIT/GA/AA/84D-7. School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
December 1984 (AD-A 152858).

23. Rew, D.W. and J.L. Junkins. "In Search of the Optimal Quadratic Regulator,"
Proceedings of the Fifth VPI&SU/AIAA Symposium on Dynamics and Control of
Large Structures. 109-123. Blacksburg VA, June 12-14, 1985.

24. Junkins, J.L. "Equivalence of the Minimum Norm and Gradient Projection
Constrained Optimization Techniques," AIAA Journal, 10: 927-929 (July 1972).

BIB - 2



25. Sesak, J.R., P.W. Likins and J. Coradetti. "Flexible Spacecraft Control by Model
Error Sensitivity Suppression," The Journal of the Astronautical Sciences, 27:
131-156 (April-June 1979).

26. Longman, R.W. "Annihilation or Suppression of Control and Observation
Spillover in the Optimal Shape Control of Flexible Spacecraft," The Journal of the
Astronautical Sciences, 27: 381-399 (October-December 1979).

27. Calico, R.A. Jr. and W.T. Miller. "Decentralized Control for a Flexible
Spacecraft," Proceedings AIAA/AAS Astrodynamics Conference. AIAA-82-
1404. San Diego CA, August 9-11, 1982.

28. Calico, R.A. "Decoupled Direct Output Feedback Control of a Large Space
Structure," Proceedings of SECTAM XII - The Southeastern Conference on
Theoretical and Applied Mechanics. 309-313. Callaway Gardens GA, May 10-
11, 1984.

29. Calico, R.A. and F.E. Eastep. "Structural Design and Decoupled Control," Acta
Astronautica, 19: 9-15 (January 1989).

BIB - 3



Yim

Captain Garret L. Schneider . . He

received his Bachelor of Science in Aeronautics and Astronautics in 1980 from the

University of Washington (Seattle, Washington) and was commissioned -in the U.S. Air

Force following Officer Training School. He served as a flight test and simulation engineer

at the Air Force Flight Test Center, Edwards AFB, California until May, 1983. He then

attended the Air Force Institute of Technology (AFIT) School of Engineering in residence

at Wright-Patterson AFB, Ohio, receiving a Master of Science in Aeronautical Engineering

in December, 1984. Captain Schneider was then assigned to Headquarters, AF Space

Division, Los Angeles AFS, California, where he managed space systems survivability

programs for the Strategic Defense Initiative until returning to AFIT (School of

Engineering) in June, 1987 to begin the resident doctoral program.

( 4aukA-

VITA- I



UNCLASSIFIED
* SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE 0MB No. 0704-0188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE Approved for public release;distribution unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/DS/ENY/90-02
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)

School of Engineering AFIT/ENY
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology (AU)

Wright-Patterson AFB, Ohio 45433-6583
8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO, ACCESSION NO.

11. TITLE (Include Security Classification)

INTEGRATED STRUCTURAL/CONTROL DESIGN VIA MULTIOBJECTIVE OPTIMIZATION
12. PERSONAL AUTHOR(S)

Garret L. Schneider. ,.. m.S,, Captain. USAF
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
PhD Dissertation FROM TO_ 1990, May
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

12 02 Optimization, Control Theory, Flexible Structures,

22 02_ Combinatorial Analysis, Mathematical Analysis
19. ABSTRACT (Continue on reverse if necessary and id-.;tify by block number)

Research Committee Chairman: Dr Robert A. Calico, Jr.
Interim Dean, School of Engineering

0|

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
QUNCLASSIFIED/UNLIMITED 0 SAME AS RPT. [ DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c, OFFICE SYMBOL

Robert A. Calico. Jr..itrim Dp (513) 255-1025 AFIT/EN
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED



Block 19:

A minimum correction homotopy approach is used to obtain the
simultaneous/integrated optimal design of a large flexible structure
and its active control system. Instead of the usual method of weighting
and summing all desired objectives to form a constrained scalar
optimization problem, a vector of objective functions is dealt with
directly. The Draper/RPL configuration (a central hub with four symmetric,
identical arms) is the design structure. The design seeks to minimize the
mass of the arms. Using simple feedback of arm displacements and velocities,
the control system seeks to achieve specified closed-loop eigenvalues
(frequencies and damping ratios) and control effort. Design variables are
the arm dimensions, control system gains, and sensor and actuator locations.
Not only can the structural design be accomplished while placing the
closed-loop eigenvalues, but a simultaneous 50% reduction in mass and/or
control effort can be obtained. Since reduced-order models were used for the
structural/control design, the resultant configurations are easily driven
unstable by spillover from higher-order unmodeled modes. A modal suppression
technique is applied to eliminate observation spillover and provide a decade
of deadband above the controller bandwidth.


